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Effect of TiO2 nanoparticles on thermo-mechanical properties of cast zein
protein films

Abstract
Zein protein (ZP) films embedded with core-and-shell nanoparticles, with titanium dioxide as core and silica
as shell (TiO2@@SiO2), were prepared by solution-casting method for its effect on mechanical properties.
ZP (>90% protein) at 1.5% w/w was prepared in aqueous ethanol solution with addition of TiO2@@SiO2
nanoparticles and sonicated at 0, 16, 80 and 160 μm amplitudes prior to casting on leveled glass plates or petri
dishes. The physical and mechanical properties of prepared films were characterized. Storage modulus below
the glass transition temperature Tg (∼40 °C) decreased after sonication at all levels. Multiple peaks for DSC
measurements of ZP films starting at −33.74 to −25.43 °C, and 122 to 138 °C indicated different glass
transition temperatures and degradation profiles. Temperature range for thermal degradation of films was
between 280 and 340 °C, which corresponds to the decomposition of ZP proteins. Presence of three to four
degradation stages were observed in oxidizing the protein films in the temperature range of 30 to 850 °C.
Incorporation of 1.5% (w/w) of TiO2@@SiO2 nanoparticles into ZP films was shown to change the film
properties and helped to improve their mechanical properties; however, reduced the elongation-to-break by
almost half to two-third. Initial contact angle of ZP films with and without nanoparticles varied from 19.6 to
25.3° and 17.9 to 22.8°, respectively, irrespective of sonication levels. Water vapor permeability (WVP)
(10−11 g m/m2 s Pa) was affected by film thickness, however, were not significantly affected by sonication
conditions and nanoparticle loading at study levels.
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ABSTRACT 

Zein protein (ZP) films embedded with core-and-shell nanoparticles, with titanium dioxide 

as core and silica as shell (TiO2@@SiO2), were prepared by solution-casting method for its effect 

on mechanical properties. ZP (>90% protein) at 1.5% w/w was prepared in aqueous ethanol 

solution with addition of TiO2@@SiO2 nanoparticles and sonicated at 0, 16, 80 and 160 µm 

amplitudes prior to casting on leveled glass plates or petri dishes. The physical and mechanical 

properties of prepared films were characterized.  Storage modulus below the glass transition 

temperature Tg (~ 40°C) decreased after sonication at all levels. Multiple peaks for DSC 

measurements of ZP films starting at -33.74 to -25.43°C, and 122 to 138°C indicated different 

glass transition temperatures and degradation profiles. Temperature range for thermal degradation 

of films was between 280 and 340°C, which corresponds to the decomposition of ZP proteins. 

Presence of three to four degradation stages were observed in oxidizing the protein films in the 

temperature range of 30 to 850°C. Incorporation of 1.5% (w/w) of TiO2@@SiO2 nanoparticles 

into ZP films was shown to change the film properties and helped to improve their mechanical 

properties; however, reduced the elongation-to-break by almost half to two-third. Initial contact 

angle of ZP films with and without nanoparticles varied from 19.6 to 25.3° and 17.9 to 22.8°, 

respectively, irrespective of sonication levels. Water vapor permeability (WVP) (10-11g m/m2 s Pa) 

was affected by film thickness, however, were not significantly affected by sonication conditions 

and nanoparticle loading at study levels. 

 

Keywords: Corn zein protein films, Nanoparticles, Thermal properties, Mechanical properties  
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1. INTRODUCTION 

Food packaging involves preservation of food quality during the period from its production, 

including processing, to its end use. Today, synthetic polymers are the main packaging materials 

since they offer versatile solutions for several food packaging needs. Conventional packaging 

polymers are questioned for and their petroleum based origins and increasing environmental 

footprint. Research on sustainable alternative materials for food packaging is going on, 

biopolymers are favored for biodegradability, eco-friendly processes, and non-petroleum origins 

(Kadam et al., 2014).  

Protein based biopolymers, such as corn zein, soy, or whey proteins, extracted from food 

industry byproducts, have desirable properties for food packaging such as biodegradability and 

lower gas permeability. The most important feature of protein based biopolymers is their excellent 

barrier to oxygen, comparable to that of ethylene vinyl alcohol (EVOH) and polyvinylidine 

chloride (PVDC) (Miller and Krochta, 1997 and Padua and Wang, 2002). Protein films not only 

decrease environmental pollution, but also enhance food properties such as flavor, appearance, and 

nutritional value through natural additives or through inherent protein properties imparted to the 

film (Gennadios and Weller, 1990). Protein films can be created from casein, collagen, corn zein, 

gelatin, soy protein isolate, wheat gluten and other food proteins (Brandenburg et al., 1993; 

Krochta, 2002); however, many such films possess either good barrier properties or good 

mechanical properties, but not both, (Brindle and Krochta, 2008; Koelsch, 1994; Krochta et al., 

1994; Krochta, 2002; Cha and Chinnan, 2004) due to their hydrophilic characteristics. Also, 

biopolymer films tend to have higher water vapor permeability, thus, are susceptible to softening 

when they come in contact with high-moisture products.  
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Zein is one of the best-understood plant proteins (Momany et al., 2006).  It is extracted from 

byproducts of the corn-refining industry (wet milling) in the form of corn gluten meal and films 

made from it possess desirable properties such as biodegradability and strong barrier to oxygen 

(Ozcalik and Tihminlioglu, 2013). Zein protein exists in corn endosperm as part of protein bodies. 

Three distinct fractions α, β, and γ zeins, have been identified and separated based on differential 

solubility in aqueous alcohol solutions (Esen, 1987; Anderson et al., 2012). Biologically, corn zein 

is classified as a prolamine protein found in endosperm and is alcohol soluble (Lawton, 2002). Its 

film-forming ability was investigated for potential use as a structural material in packaging 

applications (Lai et al., 1997). Mechanical strength of corn zein films could be improved by using 

it in combination with other biopolymers that produce stronger films or by incorporating solid 

reinforces like nanoparticles into them. Specific nanoparticles, for example, titanium dioxide could 

also impart other desirable functionality like antimicrobial activity, along with mechanical 

properties.  

Recently, Wang and coworkers, developed novel core (TiO2)-and-shell (SiO2) 

nanoparticles with a void layer between the titanium core and the silica outer layer, which acted 

as a phase-selective photo-catalyst for the photodecomposition of gas phase organic pollutants 

without any damage to their solid phase organic supports (Wang et al., 2008). The objective of 

this study was to evaluate the effect of TiO2@@SiO2 nanoparticles on the thermo-mechanical 

properties of cast zein protein films for potential use as packaging or coating materials with 

enhanced functionality. 
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2. MATERIALS AND METHODS 

2.1. Materials 

Zein protein (ZP, >90 %w/w protein) was purchased from Sigma Chemical Co. (St. Louis, 

MO, USA). All other reagents were of analytical grade and purchased from Fisher Science, USA. 

Ethanol (200 proof) was used as solvent for zein dissolution. 

The core-shell nanoparticles (TiO2@@SiO2 nanoparticles), with particle size ranging 

between 100-180 nm, were received from Zhejiang Sci-Tech University, China. These core-shell 

nanoparticles were prepared by first coating carbon on TiO2 nanoparticles by a hydrothermal 

reaction and then coated with a layer of silica via a sol-gel method (Wang et al., 2008). The 

resulting particles were calcined at elevated temperature of 500°C for 3 h to remove the interior 

carbon layer and yield nanovoid core shell nanoparticles denoted as TiO2@@SiO2 (Wang et al., 

2008). Schematic illustration and TEM image of the TiO2@@SiO2 nanoparticles used in this study 

are presented elsewhere (Kadam et al., 2013).  

2.2. Preparation of Zein Protein Films by Solvent Casting: 

Zein protein (ZP) films were prepared with modification of the method described by Weller 

et al., (1998). A film-forming solution was prepared with 13.5 % w/w ZP, 79.5 w/w % aqueous 

ethanol at 19: 1 ethanol-to-water, and 3.7 w/w % glycerol and 3.3 w/w % PEG-600 plasticizing 

agents. The pH of the film-forming solution was then adjusted to 8.0 with 2N NaOH. The solutions 

were heated to 62± 2°C for 15 min in a water bath under continuous stirring and cooled to room 

temperature for 15 min (Kadam et al., 2014). For ZP films containing TiO2@@SiO2, 1.5% w/w 

nanoparticles were added to film-forming solution prior to heating. 

For sonication treatments, the ZP film-forming solutions with 1.5% w/w nanoparticles 

were subjected to ultrasonication with horn tip amplitude of 0, 16, 80 and 160 µm, respectively, 
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denoted as treatments A: 0, B: 10, C: 50, and D: 100% power levels on the unit, Control films did 

not have nanoparticles in them, and were subjected to same sonication treatment levels. Ten, 15, 

and 20 g film-forming solutions were cast on sterile polystyrene petri dishes (Fisher Brand, USA) 

and dried at ambient conditions (24±1°C) for 48 h and stored in 50 ± 2% relative humidity (RH) 

chamber for 24 h before peeling for testing. Representative pictures of ZP films prepared by 

solution casting on plates are presented in Fig. 1.  

2.3. Analytical Tests of Cast Films: 

2.3.1 Film Surface Wettability/ Contact Angle 

All films were pre-conditioned in a humidity chamber at 50±2% RH to avoid interferences 

due to competing moisture exchange at the surface around the droplet (Marcuzzo et al., 2010; 

Kadam et al., 2013). The contact angle measurements were carried out with a Ramé-Hart 100-00 

115 NRL contact angle goniometer (Ramé-Hart instrument Co, NJ). A droplet of distilled water 

(4 μL) was deposited on the investigated on the film surface and the change in contact angles of 

water droplet in film surfaces was measured for 6 min.  

2.3.2 Water Vapor Permeability  

Water vapor transmission rate, a film barrier property, was evaluated using a gravimetric 

method as per ASTM E 96-95 with modifications described by Anderson et al., (2012) and Kadam 

et al., (2013). Two different thicknesses of films formed (i.e. 0.35 and 0.59 mm for ZP and 0.32 

and 0.65 mm for ZP-NP) using 10 and 20g of film forming solution were tested at 24±1°C 

temperature. A 62-mm effective diameter film was placed on top of a flat-lipped glass beaker 

containing 3±0.01g of anhydrous calcium sulfate (Drierite) to maintain near 0% RH inside the cell. 

The lip of the beaker was vacuum-greased and the film was sealed with a custom-made flange and 

an O-ring to secure the film between the beaker and flange. A saturated solution of calcium nitrate 
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was used to maintain 95±2% RH outside the beakers in a closed chamber. The films were left in 

the chamber for 48 h and the water vapor transmission rates (WVP) were calculated as weight 

gained by anhydrous calcium sulfate (dririte) over time using the following equation (Yoshino et 

al., 2002; Anderson et al., 2012): 

µ= (W L) / (t A P) 

where, µ is the water vapor permeability (x 10-11 g m/m2 s Pa), W is the amount of the water gained 

by the cup (g) with anhydrous calcium sulfate in it, L is the film thickness (m), t is the elapsed time 

(s), A is the film diffusion surface area, (m2), and P is the difference in pressure between the inside 

and outside of the cup (Pa). 

2.3.3 Tensile Properties 

The mechanical properties of the ZP films were evaluated by measuring the tensile 

properties of the films as per ASTM method D882-91 (ASTM, 1991) using a Universal Testing 

Machine (Model 5569, Instron Engineering Corp., Canton, MA). The film samples for tensile test 

were prepared by stamping out ISO 527 type 5A dog-bone shape specimens. The tensile samples 

had a gauge length of 30 mm and were tested with an extension rate of 50 mm/min. The Young´s 

modulus was measured at 0.1 to 0.5% of strain using the Bluehill software supplied with the 

machine.  Five specimens were tested from each sample to compare the final mechanical 

properties.  

2.3.4 Dynamic Rheology of Films  

The rheological properties of the films were measured using TA Instruments AR2000 EX 

(DE, USA) parallel plate rheometer. A 25-mm diameter plate geometry was used for the 

measurements and the gap between the plates was adjusted by applying constant normal force on 
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the films. To measure the change in shear moduli (G*) of the films, frequency sweeps were 

conducted between 1 to 100 rad/sec within linear viscoelastic regime at 25°C. 

2.3.5 Thermogravimetric Analysis (TGA) 

The thermal degradation of the ZP biopolymers with and without TiO2@@SiO2 

nanoparticles were investigated using a thermogravimetric analyzer (Model: Q50, TA Instruments, 

DE, USA) in nitrogen atmosphere. The mass of the samples used were 15 ±1 mg. The samples 

were heated from room temperature to 800°C at a heating rate of 10°C/min to measure the change 

in weight of the samples as a function of temperature (Kadam et al., 2013).  

2.3.6 Differential Scanning Calorimetry 

Differential scanning calorimetry (DSC) measurements were performed on 9.75±0.25 mg 

biopolymer samples hermetically sealed using standard aluminum pans using a DSC (Q2000, TA 

Instruments, New Castle, DE, USA) following Kadam et al., (2013). Samples underwent the heat-

cool-heat cycles between -10oC to 130oC to remove thermal history in the films at a scan rate of 

20°C/ min during first heating and held for 2 minutes before cooling to -10°C at a scan rate of 

10°C/ min. Holding time of 2 min was given before final heating cycle from -10°C to 250°C at a 

scan rate of 10°C/ min. The glass transition temperatures, Tg, were measured on the second heating 

profile. 

2.3.7 Dynamic Mechanical Analysis 

Dynamic mechanical analysis (DMA) measurements were performed on rectangular film 

samples with dimensions (l × w × t) of 13±1 mm × 7±1mm × actual thickness (0.32 to 0.65 mm), 

respectively using a Q800 DMA (TA Instruments New Castle, DE, USA) following Kadam et al., 

(2013). Dynamic temperature sweep tests were performed in tension mode to measure the storage 

and loss moduli as a function of temperature at a fixed frequency of 1 Hz. The changes in the 
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dynamic mechanical properties of the films were measured between -120oC to 150oC with a 

heating rate of 5°C/ min.  

2.3.8 Film Thickness 

Film thicknesses were measured using a digital micrometer (Model: IP-65, Mitutoya Corp., 

Tokyo, Japan) to the nearest 0.001 mm at five positions along the rectangular strips cut for the 

mechanical properties determination, and at five random positions around the perimeter of each 

film prepared for water vapor permeability (WVP) measurement. The mechanical properties and 

WVP were presented based on the average thickness of each film (Kadam et al., 2013). 

2.4 Statistical Analyses 

A single-factor completely randomized experimental design (CRD) was used to determine 

significant differences among the samples at p<0.05. Analysis of variance (ANOVA) tests 

(Fisher’s LSD) were used to determine the effect of the nanoparticles in the films. 

3. RESULTS AND DISCUSSION 

Representative physical appearance of ZP films prepared by solution casting are presented 

in Fig. 1 for qualitative comparison. . Pictures show that films without sonication were yellow in 

color, smooth surfaced without waves, flexible, homogeneous, and without apparent pores or 

cracks (Fig. 1 (a-c)). There was change in appearance for ultrasonicated films at all levels 

(appearing slightly whitish, and phase separation of solvent, (Fig. 1 (d-f)), and also with the 

presence of nanoparticles. Appearance of the film side touching the casting plates was shiny, while 

the face exposed to air was slightly dull with oriented protein ribbons. Opaque or nontransparent 

films with white circular rings on top (potentially precipitated proteins) during sonication were 

obtained with addition of 1.5% (w/w) of TiO2@@SiO2 nanoparticles in film-formation solution. 

However, films were smooth, flexible, homogeneous, and apparently without pores or cracks, but 
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the dispersion of nanoparticles was not uniform, which may be due to formation of circular rings. 

A similar result was also reported by Lai and Padua (1997). 

3.1 Properties of Cast ZP Films 

3.1.1 Film Thickness 

 The average thickness of ZP films resulting from 10, 15 and 20 g film-formation solution 

were 0.325, 0.497 and 0.655 mm, respectively with nanoparticles added, and 0.347, 0.473 and 

0.596 mm for without nanoparticles added (Table 1). The films with nanoparticles added were 

thicker; although the same weight of film-forming solutions was casted, film-forming solution 

contained more dry matter in the form of nanoparticles. 

3.1.2 Surface Wettability/ Contact Angle 

Surface hydrophobicity has been used as an important indication of the protein film 

sensitivity to water or moisture and is evaluated using the contact angle measured between the film 

surface and the water droplet. Initial contact angle of ZP films without nanoparticles varied from 

17.9 to 22.8°, irrespective of sonication levels (Fig. 2). ZP films with nanoparticles had contact 

angles increased between 19.6 to 25.3° with increase in sonication amplitude from 0 to 160 µm (0 

to 100% power) and time to absorb droplet water into film increased from 210 to 360 sec, 

respectively. This indicates the distribution of nanoparticles in the film based on sonication 

amplitude levels. It was also observed that film portion in contact with water droplet used for 

measuring water contact angle bulged (0 to 360 seconds of time) and might have created some 

error in measurement of actual contact angle. Surface contact angles decreased with time of 

exposure, irrespective of sonication levels or the presence of nanoparticles (Fig. 2). The 

agglomerated proteins could protect the hydrophobic regions of the protein resulting in decrease 

in contact angle (Chandrapala et al., 2011). A fine distribution of the nanoparticles achieved by 
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sonication resulted in covering the whole surface of the ZP film. Consequently, the increase in the 

contact angle after sonication could be attributed to possible changes in surface morphology due 

to presence of nanoparticles compared to control ZP films. The surface hydrophobicity has been 

used as an important indication for the protein film, which is usually evaluated by the contact angle 

between the film surface and the water droplet. Generally, protein films with higher contact angles 

values exhibit higher surface hydrophobicity, thus having better potential to overcome the 

limitation due to hygroscopicity (Tang and Jiang, 2007). The decrease in the contact angle with 

time could have resulted either from the equilibrium time required to show a stable contact angle 

or due to the absorption of water in to the films (Kadam et al., 2013).  

3.1.3 Water Vapor Permeability 

Figure 3 presents the WVP for the ZP films for various test conditions, and they ranged 

from 4 x10-11 to 8 x 10-11g m/m2 s Pa, increasing with the film thickness for all levels of sonications. 

Presence of NP reduced WVP, especially for 50% sonication level C, but thickness effect was 

more prominent. Weight gained by the Drierites were more in thicker films as compared to thinner 

films irrespective of sonication levels and nanoparticles presence, which was due to the way WVP 

were calculated, thickness being in numerator (Sec 2.3.2). Higher WVP is one of the major 

limitations in using protein-based films as food packaging materials. Therefore, reduction in WVP 

is desirable for potential applications in food packaging. The RH gradient is an important 

parameter in calculation of the WVP (McHugh et al., 1993). It was observed that the fluctuation 

in film WVP (Fig. 3) may be an artifact of actual thickness of the film which was taken in account 

while calculating WVP and non-significant. 

 

3.1.4 Mechanical Properties 
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Typical stress-strain curves until the point of break for ZP films with or without 

nanoparticles are shown in Fig. 4 and their tensile properties, corresponding to one of the five 

specimens tested in each batch are summarized in Table 2. Significant differences (P<0.05) in 

tensile properties were found between ZP films that differed by presence of nanoparticles, film 

thicknesses and sonication levels. The stress-strain profiles of all the ZP bioplymer films showed 

a yielding behavior followed by cold drawing before failure. The tensile stress and strain at break, 

and Young’s modulus as calculated from plots are shown in Fig. 5. A slight scattering was 

observed between the stress-strain data from different specimens in the same batch preparation, 

the extent of such scattering can be estimated from the error bars for each parameter in Fig. 5.  

Significant differences (P<0.05) were found between ZP films without nanoparticles and ZP films 

with nanoparticles, different film thicknesses and sonication level on tensile strength, strain at 

break, elastic modulus, and material toughness. In general, ZP films with nanoparticles showed 

better mechanical properties than films without nanoparticles, however, almost half to two-third 

reduction in elongation-to-break (tensile strain, %) was observed indicating the films to be more 

brittle. Similar results of 50% reduction were observed by the authors (Kadam et al., 2013) earlier 

in WPI films. ZP films had lower tensile strength and higher percentage of elongation as compare 

to the films with nanoparticles in it. Level of sonication and thickness of films has significant effect 

on tensile properties of ZP films with or without nanoparticles.  

The tensile strength also showed a similar trend between samples with and without 

nanoparticles (Fig 5), with higher strength for films with NP. It is worth mentioning that both 

ultrasonication and TiO2@@SiO2 can collectively contribute to enhance the tensile mechanical 

properties of the ZP films. Sonication helps in breaking the nanoparticle agglomerations and 

disperse them finely in the protein matrix. Such well-dispersed nanofillers could improve 
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reinforcement by nanoparticles to enhance the mechanical properties. On the other hand, from the 

Fig. 4 and 5, it can be observed that the nanoparticles are also affecting the strain at break in the 

samples. In ZP films without nanoparticles, due to the flexibly of the protein matrix, the material 

can dissipate more energy resulting in high strain at break, whereas with the incorporation of 

reinforcing fillers, the stiffness of the films increased with a simultaneous reduction in the 

flexibility of the films. Thus, the observed difference in the strain at break between pure ZP and 

ZP with nanoparticles embedded films is due to the decrease in flexibility of the films.    

3.1.5 Dynamic Rheology of Films 

The elastic response of a biopolymer films is quantified with the storage modulus (G’). A 

frequency sweep was initially performed on a ZP films in order to observe the material’s overall 

response to different frequencies. The test involved an applied lower frequency to ensure accurate 

linear viscoelastic range having the low strain of 1%. The typical rheogram of the ZP films are 

shown in Fig. 6; the frequency sweep for the ZP films with or without nanoparticles in it appeared 

to be almost identical. The elastic modulus (G’) increased systematically for all films as function 

of frequency (ω). The continuous increase in G’ indicated gradual increase in solid-like behavior 

of the ZP films, which may be attributed to presence of NP. It was observed that storage modulus 

(G’) increased with increase in level of sonication amplitude (data not shown) and film thickness. 

ZP film with 0.655mm thickness with nanoparticles had decreased storage modulus compare to 

0.497 mm thick film with nanoparticles. Storage modulus (G’) reduced in ZP films with 

nanoparticles, as compare to films without nanoparticles irrespective of thickness of film. The 

insertion of nanoparticles into the protein network may interrupt the continuity of the network, and 

results in a reduction in elasticity, which leads to the reduction in storage modulus (Kadam et al., 
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2013). It was also observed that gap between ZP films without nanoparticles and 25-mm dia 

parallel plate in rheometer was more as compared to the films with nanoparticles.  

3.1.6 Thermogravimetric Analysis 

The thermal stability of ZP films with or without nanoparticles was investigated using the 

TGA procedure. It can be seen from Fig. 7 that films exhibited 3–4 steps of thermal degradation 

in the temperature range of 30 – 850°C.  The temperature range for the first step of thermal 

degradation is between 100 – 280°C and this corresponds to the loss of water from the films. The 

temperature range for the second step of thermal degradation is between 280 – 340°C, which 

corresponds to the decomposition of ZP proteins and loss of plasticizer (glycerol) from the films, 

irrespective of nanoparticle presence. An additional third and fourth step of thermal degradation 

observed in the range of 340 - 450°C and 480 - 650°C, respectively were due to oxidation of 

partially decomposed protein. Similar results are also reported for soy protein isolate and 

montmorillonite  bio-nano-composite films (Kumar et al., 2010) and WPI films with and without 

Ti2O2 nanoparticles (Kadam et al., 2013). The decomposition residue after of nanocomposite 

samples beyond 650°C confirms the presence of a similar weight % of nanoparticles in the 

investigated samples. Presence of nanoparticles in the film can be distinguished easily from Fig 7, 

with plateaus after 650°C.   

3.1.7 Differential Scanning Calorimeter 

DSC measurement of ZP films showed the presence of multiple peaks starting at around -

33.74 to -25.43°C and around 122 to 138°C (data not shown). These peaks were similar to those 

reported by Kim and Ustunol (2001), and Hernandez-Izquierdo et al., 2008, and can be attributed 

to degradation of multicomponent materials, where more thermally stable bonds would require 

higher energies to dissociate. To avoid degradation of the samples in the DSC, samples were 
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scanned from -120 to 200°C to remove the moisture from it. Glass transition temperature (Tg) was 

more in sonicated (100%) samples as compare to un-sonicated samples.  

3.1.8 Dynamic Mechanical Analysis 

Thermo-mechanical analysis was used to study the influence of sonication and 

TiO2@@SiO2 nanoparticles on the phase behavior of the ZP films. Figures 8a and 8b depict the 

change in elastic loss modulus (E”) and storage modulus (E’) over a temperature range of -120°C 

to 100°C, respectively. The variation in the storage modulus (E`) with temperature for all ZP films 

indicated that glassy modulus corresponding to the E` below the transition temperature of the 

sorbitol phase Ts (~ 40°C) decreased after sonication for all films, irrespective of nanoparticles 

presence. Over the temperature range studied, the elastic moduli were not much different between 

nanocomposite and pure ZP samples. The peaks in the loss modulus curves revealed the presence 

of two distinct transition temperatures: stronger peak at a lower temperature (< -60°C) 

corresponded to the transition temperature of the sorbitol (Ts) in the ZP, whereas the shoulder-like 

peak between 30 and 50°C corresponded to the α-relaxation (Tα) of ZP, which is due to the glass-

rubber transition. Similarly, Zinoviadou et al., (2009) and Kadam et al., (2013) primarily observed 

α-relaxation (Tα) in WPI.  A shift in the relaxation temperatures (Ts and Tα) to higher values were 

observed in ZP films without nanoparticles after sonication. Apart from sonication, Ts and Tα also 

shifted to higher temperature ranges with the addition of TiO2@@SiO2 nanoparticles, which is 

primarily attributed to changes in the molecular interactions that can influence the segmental 

mobility in the protein. Lower-amplitude sonication of control ZP resulted in disordering of 

intermolecular forces in the protein, whereas sonication at higher amplitudes for an extended 

period of time could lead to the formation of agglomerations from the disordered phase. Such 

agglomerations could act as rigid constraints to hinder the relaxation of proteins near Ts and Tα, 
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resulting in shifting of the relaxation peaks to higher temperatures. However, in the case of ZP 

films embedded with nanoparticles, the shift in the Ts and Tα is mainly attributed to their presence. 

The presence of these rigid fillers in soft protein films could potentially act as a barrier to the 

flexibility of the protein flexibility.  

The presence of titania agglomerates, instead of a fine dispersion throughout, in sonicated 

films at higher power levels could be reconfirmed by the difference in the intensity of the Ts 

relaxation peaks. Generally, the intensity of the relaxation peak corresponds to the amount of 

amorphous phase in the bulk sample. The intensity of the Ts relaxation peaks in the ZP films with 

or without nanoparticles were almost similar.  

4. CONCLUSION 

Incorporation of small amount of TiO2@@SiO2 nanoparticles into ZP films was shown to 

change the film properties and improve their mechanical properties; however, reduction in 

elongation-to-break by half to two-third was observed. A frequency sweep during measurement of 

rheology for the ZP biopolymers with or without nanoparticles appeared to be almost identical. 

The continuous increase in G’ indicated gradual increase in solid-like behavior of the ZP films. 

Storage modulus (E`) increased with increased level of sonication amplitude, but the presence of 

nanoparticles led to a reduction in E`. There were 3–4 steps of thermal degradation of the films in 

the temperature range of 30–850°C. DSC shown glass transition temperature (Tg) was more in 

sonicated (100%) samples as compare to un-sonicated samples.  The ZP films embedded with 

nanoparticles have a great potential for application in food packaging for extending the shelf life, 

improving quality, and enhancing safety of food packaged with them. ZP films become hard and 

fragile when it comes in contact with water for longer duration and hard to seal freshly prepared 

film but it can be heat sealed after storage for some months. 
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Figure Captions 

Fig. 1. Cast ZP films Pictures (a-c): without nanoparticles (a) film formation solution in plate (b) 

semi dried film (c) oriented protein ribbons in peeled dry film and ZP films (d-f): with 

nanoparticles (d) film formation solution in plate (e) dried film at 10% sonication (f) dried 

films at 100% sonication (Photo by 14.1 MP cameras)  

Fig.  2. Effect of sonication level on Water Contact Angle of ZP film having thickness of about 

0.47 mm with or without nanoparticles. Note: % represents level of sonication. 

Fig. 3. Water vapor permeability of ZP films as a function of sonication level, nanoparticles and 

film thickness. Note: A, C, D denotes for 0, 80 and 160 µm amplitude respectively (film 

thickness, mm) 

Fig. 4. Typical Tensile stress (M Pa) – Tensile strain (%) curves for ZP films with or without 

nanoparticles having average thickness of 0.4729±0.059 or 0.4967±0.032, respectively at 

different levels of sonication level (A: 0, B: 10, C: 50 and D: 100%)  

Fig.  5. Effect of sonication level and with or without nanoparticles on young’s modulus, Tensile 

stress and tensile strain of ZP films. Error bar shows standard deviation.  

Fig. 6. Effect of film thickness and 100% Sonication on Storage Modulus of ZP biopolymers with 

or without nanoparticles 

Fig. 7. Effect of different parameters on TGA of Zein protein based Biopolymer. Where: A, B, C 

and D represent sonication of 0, 16, 80 and 160 µm amplitude and NP: with nanoparticles 

Fig. 8. DMA used for determination of (a) Loss modulus and (b) Elastic modulus of ZP films with 

or without nanoparticles prepared by different sonication levels. 
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(a)          (b)     (c) 

 

(d)      (e)           (f) 

Fig. 1. Cast ZP films Pictures (a-c): without nanoparticles (a) film formation solution in plate (b) 

semi dried film (c) oriented protein ribbons in peeled dry film and ZP films (d-f): with 

nanoparticles (d) film formation solution in plate (e) dried film at 10% sonication (f) dried 

films at 100% sonication (Photo by 14.1 MP cameras)  

. 

  



www.manaraa.com

 24 

 

Fig.  2. Effect of sonication level and nanoparticle presence on water contact angle of ZP films 

with thickness of ~ 0.47 mm. Note: % represents sonication levels. NP, with nanoparticles. 

CZP: corn zein protein. 
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Fig. 3. Water vapor permeability of ZP films as a function of sonication level, nanoparticles and 

film thickness (noted in parentheses). Letters A (0%), C (50%), D (100%) denote 

sonication amplitude at 0, 80 and 160 µm, respectively. NP, with nanoparticles 
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Fig. 4. Typical Tensile stress (M Pa) – Tensile strain (%) curves for ZP films with or without 

nanoparticles having average thickness of 0.473±0.059 or 0.497±0.032, respectively at 

different levels of sonication level (A: 0%, B: 10%, C: 50% and D: 100% sonication 

levels). NP, with nanoparticles. 
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Fig. 5. Effect of sonication levels (A: 0%, B: 10%, C: 50% and D: 100%) and with or without 

nanoparticles on Young’s modulus, tensile stress and tensile strain of ZP films. Error bar 

shows standard deviation. NP, with nanoparticles. 
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Fig. 6. Effect of film thickness and  Sonication at 100% level on Storage Modulus of ZP 

biopolymers with or without nanoparticles 
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Fig. 7. Effect of sonication levels and nanoparticle presence on TGA of cast zein protein films. A: 

0%, B: 10%, C: 50% and D:100% represent sonication of 0, 16, 80 and 160 µm amplitude 

and NP: with nanoparticles 
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Fig. 8. DMA used for determination of (a) Loss modulus and (b) Elastic modulus of ZP films with 

nanoparticles (NP) or without nanoparticles prepared by different sonication levels (A: 0% 

and D: 100%; A5 & D5 is 5th sample). 
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Table 1. Average film thicknesses of zein protein films with (ZP NP) or without (ZP) 

nanoparticles in it.  

Film Sample Size, g Average Thickness (mm) Std Dev 

ZP 10 0.3466 0.0094 

 
15 0.4729 0.0593 

 
20 0.5960 0.0997 

ZP NP  10 0.3254 0.0077 

 15 0.4967 0.0314 

 20 0.6545 0.0246 
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Table 2. Tensile Properties of different thickness ZP film with and without nanoparticles 
by casting method 

Sonicatio

n (%) 

Ampl

itude 

(µm) 

Avg. 

Thickness, 

mm 

Area(cm2) Young's 

Modulus  

(MPa) 

Tensile strain 

at Break 

(Standard) 

(%) 

Tensile strain 

at Yield (Zero 

Slope) (%) 

Tensile stress at 

Break 

(Standard) 

(MPa) 

Tensile stress 

at Yield (Zero 

Slope) (MPa) 

ZP Films with Nanoparticles 

0 0 0.32±0.01 0.011±0.001 18.58±2.59 141.94±06.28 138.79±6.05 0.81±0.03 1.37±0.05 

0.47±0.03 0.016±0.001 14.28±1.70 111.79±21.08 90.80±37.88 0.63±0.05 1.02±0.11 

0.64±0.06 0.021±0.002 18.89±2.91 72.68±17.37 56.85±16.19 0.54±0.09 0.89±0.11 

10 16 0.32±0.03 0.011±0.001 46.51±7.11 88.43±05.37 63.08±27.41 1.15±0.08 1.84±0.21 

0.54±0.08 0.018±0.003 27.10±2.01 63.76±03.82 42.83±11.13 0.71±0.11 1.14±0.18 

0.65±0.07 0.021±0.002 20.39±2.52 74.26±10.61 48.91±09.48 0.59±0.08 0.94±0.13 

50 80 0.34±0.04 0.011±0.002 46.27±7.01 100.05±11.51 81.42±42.56 1.24±0.12 2.00±0.19 

0.47±0.03 0.015±0.001 33.60±2.84 71.56±12.63 46.94±15.86 1.02±0.02 1.62±0.11 

0.64±0.06 0.021±0.002 34.77±3.42 51.95±04.44 31.08±11.15 0.78±0.11 1.24±0.17 

100 160 0.32±0.04 0.011±0.001 50.26±5.69 32.80±12.58 29.38±12.74 1.22±0.21 1.86±0.09 

0.51±0.03 0.017±0.001 42.69±2.84 37.15±10.15 33.29±13.49 0.94±0.07 1.56±0.15 

0.69±0.04 0.023±0.002 29.32±4.37 42.42±09.51 39.31±08.99 0.64±0.12 0.99±0.09 

ZP Films without Nanoparticles 

0 0 0.34±0.04 0.011±0.002 5.56 ±1.08 201.00 ±10.19 173.15±56.41 0.74±0.05 1.15±0.35 

0.39±0.01 0.013±0.001 30.40±2.04 117.23 ±15.04 13.77±07.16 0.10±0.33 0.65±0.10 

0.46±0.02 0.015±0.001 10.47 ±1.94 181.79 ±04.42 178.22±07.98 0.73±0.06 1.25±0.05 

10 16 0.35±0.06 0.012±0.002 48.61 ±4.37 91.64 ±10.05 06.87±01.60 0.26±0.44 0.86±0.29 

0.52±0.03 0.017±0.001 15.20 ±6.70 115.65 ±05.21 91.21±12.46 -0.07±0.02 0.44±0.05 

0.59±0.03 0.020±0.001 06.37 ±1.62 167.49 ±06.91 154.28±15.51 0.61±0.03 1.01±0.10 

50 80 0.36±0.01 0.012±0.001 21.76 ±1.19 153.36 ±16.06 151.94±15.83 0.88±0.09 1.55±0.14 

0.48±0.07 0.016±0.002 26.73 ±2.14 98.64 ±32.60 92.95±52.42 0.81±0.12 1.23±0.27 

0.64±0.03 0.021±0.001 15.67 ±1.47 01.18 ±00.32 110.76±40.16 0.76±0.17 1.12±0.13 

100 160 0.35±0.03 0.012±0.001 19.60 ±3.61 182.02 ±12.47 180.85±12.01 1.10±0.34 1.59±0.07 

0.50±0.02 0.017±0.001 16.52 ±1.66 148.26 ±29.14 147.84±29.27 0.72±0.05 1.24±0.14 

0.70±0.02 0.023±0.001 13.10 ±0.45 108.68 ±13.97 105.82±13.98 0.68±0.12 1.01±0.08 
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